BIOLOGY EOC STUDY GUIDE

This study guide is designed to help students prepare to take the Biology End-Of-Course Test. This study guide contains tips on how to prepare for the test and some strategies students might use to perform their best during the test.

STUDY TOOLS AND RESOURCES

It is critical that when studying, students have the appropriate environment that fosters and supports positive study habits. Listed below are some suggested study tools and resources that students might consider when preparing for the EOC, during class or independently.

STUDY TOOLS AND RESOURCES

<table>
<thead>
<tr>
<th>MATERIALS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-Study Guide, Pen or Pencil, Highlighter, Paper, Notebook</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESOURCES:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-Dictionary, Textbook, Teacher, Tutor, Study Partner, Notebook, Computer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STUDY SPACE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-Comfortable, Good lighting, Minimal Distraction, Work Area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME COMMITMENT:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-When? How long? How often?</td>
</tr>
</tbody>
</table>

SUGGESTED STEPS FOR USING THE STUDY GUIDE

Become familiar with the design of the study guide. Recognize the purpose of the study guide. Take a few minutes to browse through the study guide before studying.

Find out what the EOC is and how you are expected to perform in order to be considered proficient in Biology. Frequently Asked Questions: http://www.fldoe.org/faq/default.asp?Dept=179&Cat=125

Take a Mock EOC. Check your answers to see how well you did. Try to identify where you need to study more and what areas you might need to ask for further assistance from your teacher.
PREPARING FOR THE EOC

NOTE: Preparing for the Biology EOC test will take time, effort, and practice. You cannot prepare for the Biology EOC test in one night!

In order to do your best on the Biology EOC test, it is critical that you take the time to prepare and develop study skills. First, you need to make sure that your classroom experiences and study time are used efficiently and productively. Second, it is most helpful to know some general test-taking strategies to ensure that you will achieve the best score.

Here are some important questions to ask yourself when developing your study skills. Your answers may help you define some areas in which you need to make some improvements.

1. How would you describe yourself as a student?
2. What are your study skills strengths and/or weaknesses as a student? What methods help you the most?
3. How do you typically prepare for a biology test?
4. Compare an ideal study situation (environment) to your actual study environment.
5. What can you change about the way you study to make your study time more productive?

Study skills can actually be divided into separate target areas: time management, organization, and active participation. Use these suggestions to help you improve your study skills and your study environment.
TIME MANAGEMENT

Do you have a plan for studying? Without a plan, many students don’t meet their goals. Here are some strategies to consider when developing a study plan.

- Set realistic goals for each study session
- Chart your progress
- Study for a reasonable amount of time (cramming is not recommended)
- Take frequent breaks
- Be consistent – establish a routine
- Study the most challenging content FIRST
- Build in review time at the end of each study session
- Evaluate your accomplishments
- Reward yourself

ORGANIZATION

Are you organized? Do you have a place to study and do you have the materials and resources you need to study? Get organized and prepared!

- Establish a study area that has minimal distraction
- Gather your materials in advance; keep them ready for each study session
- Develop a study plan and follow it consistently
- Find a way to access the necessary resources (i.e., computer)

ACTIVE PARTICIPATION

What is active studying? It can be anything that gets you to interact with the materials you are studying. Active studying allows you to stay more alert and be more productive while learning new information.

- Carefully read the information and then DO something with it
- Mark important points with a highlighter, circle them with a red pen, write notes on them, or summarize in your own words, read out loud
- Ask questions; write them down and actively seek answers
- Create sample test questions and answer them
- Find a friend who is also preparing for the same test and quiz one another

TEST-TAKING STRATEGIES

There are many test-taking strategies that you can use before and during a test to help you have the most successful testing situation possible. Here are some questions to help you take a look at your test-taking skills.

1. How would you describe your test-taking skills? List the strategies that you already know and use when you are taking a test.
2. How do you feel when you are taking a test? List test-taking behaviors you use when preparing for and taking a test that do not contribute to (but distract from) your success.
3. What would you like to learn about taking tests?
SUGGESTED STRATEGIES TO PREPARE FOR THE BIOLOGY EOC TEST

There are some general strategies that you can use to prepare for any test, including the Biology EOC test. These strategies include:

- Pay attention to your daily / weekly grades in your science class.
- Focus on key factors:
 a. In which areas of science are you successful?
 b. What has kept you from achieving higher scores?
 c. What would you change to allow you to achieve higher scores?
- Remove or minimize any obstacles that might prevent you from studying – or focusing.
- Be prepared.
- Know what standards / skills are being assessed and then practice understanding and using those skills.
- Don’t wait until the last minute. Begin early and pace yourself.

<table>
<thead>
<tr>
<th>Strategies to Use the Day Before the Biology EOC Test</th>
<th>Strategies to Use the Morning of the Biology EOC Test</th>
<th>Strategies to Use During the Biology EOC Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Review what you have learned from the study guide.</td>
<td>- Eat a good breakfast (protein = long-lasting energy).</td>
<td>- Focus on the test. Block out what is going on around you. Listen carefully to directions.</td>
</tr>
<tr>
<td>- Review general test-taking strategies.</td>
<td>- Dress appropriately (dress comfortable and in layers; hot or cold extremes can affect your performance).</td>
<td>- Budget your time. Allocate time to work on each question.</td>
</tr>
<tr>
<td>- Review content-specific information that shows</td>
<td>- Arrive for the test on time.</td>
<td>- Take a quick break. Put your pencil down, take a deep breath, close your eyes – one minute – then resume.</td>
</tr>
<tr>
<td>connections and relationships (lists, diagrams, graphic organizers, etc.).</td>
<td>- Skim notes, text, vocabulary, and/or diagrams.</td>
<td>- Practice positive self-thinking.</td>
</tr>
<tr>
<td>- Focus attention on the areas that you are most in need of improving.</td>
<td></td>
<td>- Mark key ideas in your test booklet and come back to them.</td>
</tr>
<tr>
<td>- Read short summaries of each area to revitalize your memory.</td>
<td></td>
<td>- Read each question completely. Read answer choices completely. Follow the process of selection and elimination.</td>
</tr>
<tr>
<td>- Get a good night’s sleep.</td>
<td></td>
<td>- Check your answers when you have finished the test.</td>
</tr>
</tbody>
</table>
UNDERSTANDING THE BIOLOGY STANDARD COURSE OF STUDY

NOTE: Biology is a very broad subject. To provide you with the most information related to Biology, it would require hundreds of pages. This study guide provides you with some specific, summarized information that you will need to know for the Biology EOC test and it will help to facilitate your study efforts. Your Biology textbook will be your best source of additional information.

INFORMATION TO STUDY FOR THE BIOLOGY EOC TEST
(Lists, Diagrams, Graphic Organizers, Key Vocabulary, Distinctive Categories, etc.)

- Scientific Investigations
- Hypotheses, Variables, Controls, Measurement / Tools, Data, Charts / Graphs, Communication of Findings
- Inquiry Activities, Research, Statistical Techniques, Laboratory Reports, Sources of Error, Community Involvement
- Safety Procedures, Laboratory / Field Studies, Potential Hazards, Manipulate Materials / Equipment
- Analyze Reports, Scientifically Literate Viewpoint, Adequacy of Experimental Controls, Replication, Interpretations

HYPOTHESIS: tentative explanation for an observation, phenomenon, or scientific problem that can be tested by further investigation

VARIABLE: to vary or change

INDEPENDENT VARIABLE: a manipulated variable in an experiment or study whose presence or degree determines the change in the dependent variable

DEPENDENT VARIABLE: the observed variable in an experiment or study whose changes are determined by the presence or degree of one or more independent variables

CONTROL: a standard against which other conditions can be compared in a scientific experiment

SOURCES OF ERROR IN EXPERIMENTS:
- Instrumental error (lack of calibration)
- Personal error (inaccurate observations)
- Sampling error (sample size too small or not random)
- Replication error (lack of consistency and accuracy)
- Experimental design
- Measurement error (lack of accuracy and precision)

BASIC STEPS FOR AN EXPERIMENT:

1. plan the research including determining information sources, research subject selection, and ethical considerations for the proposed research and method,
2. design the experiment concentrating on the system model and the interaction of independent and dependent variables,
3. summarize a collection of observations to feature their commonality by suppressing details (descriptive statistics),
4. reach consensus about what the observations tell us about the world we observe (statistical inference),
5. document and present the results of the study.

TYPES OF OBSERVATIONS:

Qualitative – described by words or terms rather than numbers and including subjective descriptions in terms of variables such as color, shape, and smell; often recorded using terms, photographs, or drawings

Quantitative – numerical values derived from counts or measurements of a variable; frequently require some kind of instrument use in recording

REPLICATION OF EXPERIMENTS: WHY?
- shows how variable the response can be
- limited resources may affect results; need to determine a compromise between resources and methods
- need to show a difference between pairs of means
- reliability of results
- consistency of methods and procedures and equipment
- analysis of data and interpretation of data to form conclusions
- ability to form a scientifically literate viewpoint with valid supporting data

http://www.sciencebuddies.org/mentoring/project_scientific_method.shtml
ORGANIC MOLECULES:
Organic compounds contain carbon and are found in all living things.

- **Carbohydrates**
 - major source of energy and include sugars and starches
 - made up of carbon, hydrogen, and oxygen with a 2:1 ratio of hydrogen to oxygen
 - plants and animals use carbohydrates for maintaining structure within the cells

- **Proteins**
 - Nitrogen-containing compounds made up of chains of amino acids
 - 20 amino acids can combine to form a great variety of protein molecules
 - can compose enzymes, hormones, antibodies, and structural components

- **Lipids**
 - water-insoluble (fats and oils)
 - made up of carbon, hydrogen and oxygen; composed of glycerol and fatty acid
 - provide insulation, store energy, cushion internal organs, found in biological membranes
 - saturated (with hydrogen, single bonds, see example ▸) and unsaturated (double bonds)

- **Nucleic Acids**
 - direct the instruction of proteins
 - genetic information an organism receives from its parents
 - two types: DNA (deoxyribonucleic acid) and RNA (ribonucleic acid)

CELL ORGANELLES:
- **Chloroplast** – capture solar energy for photosynthesis (plant cells, some algae)
- **Golgi Body** – package, distribute products
- **Lysosomes** – digests excess products and food particles
- **Mitochondria** – transform energy through respiration
- **Nucleus** – contains DNA which controls cellular activities
- **Ribosome** – produce proteins
- **Vacuole** – store substances
- **Cell (plasma) membrane** – phospholipid bilayer that protects and encloses the cell; controls transport; maintains homeostasis
- **Cell wall** – rigid second layer that protects and encloses the cell (plant cells and some bacteria)
- **Cytoplasm** – fluid-like substance that contains various membrane-bound structures (organelles) that perform various functions
- **Endoplasmic Reticulum** – site of chemical reactions
 - ROUGH: contains ribosomes
 - SMOOTH: lipid production
- **Cytoskeleton** – provides internal structure
 - MICROFILAMENTS: fibers
 - MICROTUBULES: cylinders

CELL TYPES:
- **Unicellular** – organism that exists as a singular, independent cell
- **Multicellular** – organism that exists as specialized groups of cells; cells are organized into tissues that perform the same function; tissues form organs and organs make up an organ system
- **Prokaryote** – has nuclear material in the center of the cell, but is not enclosed by a nuclear membrane; no membrane-bound organelles; found in bacteria and blue-green bacteria
- **Eukaryote** – contain a clearly defined nucleus enclosed by a nuclear membrane and membrane-bound organelles; found in plants, animals, fungi, and protists

CELL THEORY:
- The cell is the basic unit of life.
- All organisms are composed of cells
- All cells come from pre-existing cells

CELL SPECIALIZATION:
- cells >>> tissues >>> organs >>> organ systems >>> organism
- each cell performs a specific function for each tissue or organ
- as cells mature, they shape and contents change
- as cells become specialized they may contain organelles that are NOT common to all cells (for example: plastids, cell wall, vacuole, centriole)
- design and shape of a cell is dictated by its function and the conditions under which it works
- multicellular organisms exhibit greater cellular specialization, such as red blood cells, nerve cells, and gland cells
CELL TRANSPORT:
- **Passive Transport** – movement of substances across the plasma membrane without the use of the cell’s energy (with the concentration gradient)
 1. **DIFFUSION** – movement of substances across the plasma membrane from an area of high concentration to an area of low concentration
 2. **OSMOSIS** – diffusion of water across the plasma membrane from areas of high concentration to areas of lower concentration
 3. **FACILITATED TRANSPORT** – a carrier molecule embedded in the plasma membrane transports a substance across the plasma membrane following the high-to-low concentration gradient
- **Active Transport** – movement of substances across the plasma membrane that requires the use of the cell’s energy and carrier molecules; substances are moving from an area of low concentration to an area of higher concentration (against the concentration gradient)
 1. **ENDOCYTOSIS** – large particles are brought into the cell
 2. **EXOCYTOSIS** – large particles leave the cell
- **HOMEOSTASIS** – internal equilibrium; the plasma membrane regulates what enters and leaves the cell; a selectively permeable membrane only allows certain substances to pass through
- **Effect of Concentration on a Cell**
 1. **HYPOTONIC** – water moves in; cell bursts
 2. **HYPERTONIC** – water moves out; cell shrivels
 3. **ISOTONIC** – no net movement; cell maintains equilibrium

HOMESTASIS: Self-regulating mechanism that maintains internal conditions (with individual cells and within organs, systems) Example: body temperature, respiration, nutritional balance, etc. Cells communicate their needs to each other mainly through their cell membranes by releasing chemical messengers that, ultimately, tell the hypothalamus gland in the brain that a change needs to be made in the interstitial fluid. Since it is the ruler of homeostasis, the hypothalamus sends neural and chemical signals to other glands, tissues, organs, and organ systems to adjust the internal environment, the interstitial fluid, so that it is more suitable for all the cells at that particular time. And since we are always changing what we are doing, homeostasis needs to change along with our activities, both day and night. This constantly changing internal environment is the process of homeostasis.

BIOCHEMICAL REACTIONS: chemical bonds are formed and broken within living things creating chemical reactions that impact the ability to maintain life and carry out life functions
- **Cellular Respiration** – food molecules are converted to energy; there are three stages to cellular respiration; the first stage is called glycolysis and is anaerobic (no oxygen is required); the next two stages are called the citric acid cycle and the electron transport chain and are aerobic (oxygen is required)
 \[\text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 \rightarrow 6\text{CO}_2 + 6\text{H}_2\text{O} + \text{ENERGY (36 ATP)} \]
- **Photosynthesis** – plant cells capture energy from the Sun and convert it into food (carbohydrates); plant cells then convert the carbohydrates into energy during cellular respiration; the ultimate source of energy for all living things is the Sun (in Chemosynthesis, organisms use sulfur or nitrogen as the main energy source)
 \[6\text{CO}_2 + 6\text{H}_2\text{O} + \text{ENERGY(from sunlight)} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 \]
- **ATP** – ATP is a molecule that stores and releases the energy in its bonds when the cell needs it; removing a phosphate group (P) releases energy for chemical reactions to occur in the cell and ATP becomes ADP; when the cell has energy, the energy is stored in the bond when the phosphate group is added to the ADP
 \[\text{ATP} \iff \text{ADP} + \text{P} + \text{ENERGY} \]
- **Fermentation** – when cells are not provided with oxygen in a timely manner, this process occurs to continue producing ATP until oxygen is available again; glucose is broken down; there are two types of fermentation
 - Lactic Acid Fermentation (muscle cells) \[\text{Glucose} \Rightarrow \text{Lactic Acid} + 2\text{ATP} \]
 - Alcoholic Fermentation (plant cells) \[\text{Glucose} \Rightarrow \text{CO}_2 + \text{Alcohol} + 2\text{ATP} \]
ENZYMES:
Enzymes are special proteins that regulate nearly every biochemical reaction in the cell. Different reactions require different enzymes.
Enzymes function to:
- Provide energy to cells
- Build new cells
- Aid in digestion
- Break down complex molecules ("substrate" = reactant)
- Catalysts (speed up chemical reactions without being used up or altered)
- Factors that affect enzymes: pH, temperature, and quantity

AEROBIC AND ANAEROBIC RESPIRATION:

Aerobic Respiration –
- requires the presence of oxygen
- release of energy from the breakdown of glucose (or another organic compound) in the presence of oxygen
- energy released is used to make ATP, which provides energy for bodily processes
- takes place in almost all living things

Anaerobic Respiration –
- occurs in the absence of oxygen
- breakdown of food substances in the absence of oxygen with the production of a small amount of energy
- produces less energy than aerobic respiration
- often called fermentation
- seen as an adaptation for organisms that live in environments that lack oxygen

<table>
<thead>
<tr>
<th></th>
<th>CELLULAR RESPIRATION</th>
<th>PHOTOSYNTHESIS</th>
<th>CHEMOSYNTHESIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food Broken Down</td>
<td>Food Synthesized</td>
<td>Energy from Sun stored in Glucose</td>
<td>Food Synthesized</td>
</tr>
<tr>
<td>Energy from Glucose Released</td>
<td>Energy from Sun stored in Glucose</td>
<td>Carbon Dioxide taken in</td>
<td>Energy from Methane or Inorganic Material (ex: H gas or Hydrogen sulfide)</td>
</tr>
<tr>
<td>Carbon Dioxide given off</td>
<td>Carbon Dioxide taken in</td>
<td>Oxygen given off</td>
<td>Organisms often called chemotrophs</td>
</tr>
<tr>
<td>Oxygen taken in</td>
<td>Oxygen given off</td>
<td>Produces Sugars (Glucose) from PGAL</td>
<td>Organisms called extremophiles</td>
</tr>
<tr>
<td>Produces Carbon Dioxide and Water</td>
<td>Produces Sugars (Glucose) from PGAL</td>
<td>Requires Light</td>
<td>Live in environments without oxygen</td>
</tr>
<tr>
<td>Does not require Light</td>
<td>Requires Light</td>
<td>Occurs only in presence of Chlorophyll</td>
<td>Anaerobic Bacteria</td>
</tr>
<tr>
<td>Occurs in ALL Living Cells</td>
<td>Occurs only in presence of Chlorophyll</td>
<td>Organisms called Autotrophs</td>
<td>Habitats: hydrothermal vents</td>
</tr>
<tr>
<td>Organisms often called Heterotrophs</td>
<td>Organisms called Autotrophs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- Molecular Basis of Heredity, DNA Replication, Protein Synthesis (Transcription, Translation), Gene Regulation
- Characteristics of Sexual and Asexual Reproduction
- Patterns of Inheritance, Dominant / Recessive / Intermediate Traits, Multiple Alleles, Polygenic Inheritance, Sex-Linked Traits, Independent Assortment, Test Cross, Pedigrees, Punnett Squares
- Impact of Advances in Genomics on Individuals and Society, Human Genome Project, Applications of Biotechnology
- Development of Theory of Evolution by Natural Selection, Origin and History of Life, Fossil and Biochemical Evidence, Mechanisms of Evolution, Applications (Pesticides and Antibiotic Resistance)

DNA & RNA:
- Nucleic acids composed of nucleotides
- Nucleotides composed of:
 - Phosphate group
 - Sugar
 - Nitrogenous base

<table>
<thead>
<tr>
<th>DNA</th>
<th>RNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deoxyribonucleic acid</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>Double-stranded, twisted helix</td>
<td>Single-stranded</td>
</tr>
<tr>
<td>Never leaves the nucleus</td>
<td>Leaves the nucleus</td>
</tr>
<tr>
<td>Nitrogenous bases: adenine, thymine, guanine, cytosine</td>
<td>Nitrogenous bases: adenine, uracil, guanine, cytosine</td>
</tr>
<tr>
<td>(Guanine w/Cytosine, Adenine w/Thymine)</td>
<td>(Guanine w/Cytosine, Adenine w/Uracil)</td>
</tr>
<tr>
<td>(Purines opposite the Pyrimidines)</td>
<td>Sugar: ribose</td>
</tr>
<tr>
<td>(held together by weak hydrogen bonds)</td>
<td>Sugar: deoxyribose</td>
</tr>
<tr>
<td>Sugar: deoxyribose</td>
<td></td>
</tr>
<tr>
<td>Controls production of all proteins</td>
<td>Controls production of all proteins</td>
</tr>
<tr>
<td>DNA Replication:</td>
<td>RNA Replication:</td>
</tr>
<tr>
<td>(DNA unravels and each strand makes a new exact copy so that when mitosis takes place, each cell has the exact copy of DNA)</td>
<td>(DNA unravels and each strand makes a new exact copy so that when mitosis takes place, each cell has the exact copy of DNA)</td>
</tr>
<tr>
<td>DNA coiled into chromosomes in nucleus</td>
<td>DNA coiled into chromosomes in nucleus</td>
</tr>
<tr>
<td>Tiny sections of DNA are called genes</td>
<td>Tiny sections of DNA are called genes</td>
</tr>
<tr>
<td>Sequence of bases determines sequence of amino acids in proteins</td>
<td>Sequence of bases determines sequence of amino acids in proteins</td>
</tr>
</tbody>
</table>

DNA Replication:
(mRNA is made from one strand of DNA, carries message to ribosomes)
Translation:
(mRNA translated into a protein at the ribosomes; tRNA transfers amino acids from cytoplasm to ribosomes)

DNA Synthesis:
- Transcription
- Translation

Protein Synthesis:
- Transcription
- Translation
Asexual and Sexual Reproduction:

Asexual Reproduction – a single parent produces one or more identical offspring by dividing into two cells - mitosis (protists, arthropods, bacteria by binary fission, fungi, plants); produces large numbers of offspring
- offspring are clones of parents (genetically identical)
- common in unicellular organisms, good for stable environments
- budding, binary fission, conjugation
- quick process (low energy requirement) – produces high number of offspring

Sexual Reproduction – pattern of reproduction that involves the production and fusion of haploid sex cells; haploid sperm from father fertilizes haploid egg from mother to make a diploid zygote that develops into a multicellular organism through mitosis
- results in genetic variation (diversity)
- common in multicellular organisms (external or internal fertilization); good for changing environments
- slow process (high energy requirement) – produces low number of offspring
- meiosis = formation of sex cells (gametes)

CELL DIVISION:
- process of copying and dividing the entire cell
- the cell grows, prepares for division, and then divides to form new daughter cells
- allows unicellular organisms to duplicate in a process called *asexual reproduction*
- allows multicellular organisms to grow, develop from a single cell into a multicellular organism, make other cells to repair and replace worn out cells
- three types: binary fission (bacteria and fungi), mitosis, and meiosis

COMPARISON OF MITOSIS AND MEIOSIS

<table>
<thead>
<tr>
<th>MITOSIS</th>
<th>MEIOSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell cycle consists of interphase, mitosis, and cytokinesis</td>
<td>Consists of two cell divisions, but only one chromosome replication (sometimes called reduction division)</td>
</tr>
<tr>
<td>Interphase – longest part of cell cycle</td>
<td>Each cell division consists of prophase, metaphase, anaphase, and telophase</td>
</tr>
<tr>
<td>Growth, metabolism, and preparation for division occurs</td>
<td>Occurs only in sex cells – to produce more sex cells (gametes)</td>
</tr>
<tr>
<td>Duplicates chromosomes (DNA Replication)</td>
<td>First Meiosis Division</td>
</tr>
<tr>
<td>Mitosis – division of nucleus of the cell</td>
<td>Produces cells containing ½ # of double stranded chromosomes</td>
</tr>
<tr>
<td>- Prophase - duplicated chromosomes and spindle fibers appear</td>
<td>Second Meiosis Division</td>
</tr>
<tr>
<td>- Metaphase – duplicated chromosomes line up randomly in center of cell between spindle fibers</td>
<td>Results in formation of four cells</td>
</tr>
<tr>
<td>- Anaphase – duplicated chromosomes pulled to opposite ends of cell</td>
<td>Each cell w/ ½ # of single-stranded chromosomes (haploid cells)</td>
</tr>
<tr>
<td>- Telophase – nuclear membrane forms around chromosomes at each end of cell; spindle fibers disappear; chromosomes disperse</td>
<td></td>
</tr>
<tr>
<td>Cytokinesis – division of plasma membrane; two daughter cells result with exact genetic information (in plant cells a “cell plate” forms along the center of the cell and cuts the cell in half; cell plate forms new cell walls once the plasma membrane divides)</td>
<td>Sperm</td>
</tr>
<tr>
<td>RESULTS: Two daughter cells (body cells)</td>
<td>Each primary sperm cell develops into four haploid cells of equal size. As cells mature, the cells lose most of their cytoplasm and develop a long whip-like tail for movement.</td>
</tr>
<tr>
<td>Same number of chromosomes as original cell (humans = 46)</td>
<td>Egg</td>
</tr>
<tr>
<td>Cells are diploid (human diploid # = 46 or 23 homologous pairs)</td>
<td>Each primary egg cell develops into one large haploid cell and three smaller haploid cells called polar bodies. The first meiosis division produces one large cell and one polar body. The second meiosis causes the large cell to produce one egg cell and a polar body; the original smaller polar body divides into two polar bodies. The polar bodies eventually disintegrate. The final egg cell is provided with the larger supply of stored nutrients</td>
</tr>
</tbody>
</table>

RESULTS:
- Four daughter cells (sex cells)
- ½ # of chromosomes (haploid) with genetic variation (n = 23)
- Sex cells combine during *sexual reproduction* to produce a diploid individual
GENETICS:
- branch of biology that deals with heredity
- Gregor Mendel experimented with sweet pea plants in 1800s
- Trait – characteristic an individual receives from its parents
- Gene – carries instructions responsible for expression of traits; a pair of inherited genes controls a trait; one member of the pair comes from each parent; often called alleles
- Homozygous – two alleles of a pair are identical (BB or bb)
- Heterozygous – two alleles of a pair are different (Bb); often called “hybrid”
- Dominant – controlling allele; designated with a capital letter
- Recessive – hidden allele; designated with lower-case letters
- Genotype – genetic makeup of an organism (represented by the letters)
- Phenotype – physical appearance of an organism (description of the letters)
- Monohybrid – cross involving one trait
- Dihybrid – cross involving two traits
- Punnett Square – graphic organizer used to show the probable results of a genetic cross
- Pedigree – graphic organizer to map genetic traits between generations
- Karyotype – chart of metaphase chromosome pairs to study chromosome number / diseases
- Test Cross – mating of an individual of unknown genotype with an individual of known genotype; can help to determine the unknown genotype of the parent

MENDELS LAWS OF HEREDITY:
1. Law of Dominance
 - the dominant allele will prevent the recessive allele from being expressed
 - recessive allele will appear when it is paired with another recessive allele in the offspring
2. Law of Segregation
 - gene pairs separate when gametes (sex cells) are formed
 - each gamete has only one allele of each gene pair
3. Law of Independent Assortment
 - different pairs of genes separate independently of each other when gametes are formed (Anaphase II in Meiosis)

PATTERNS OF INHERITANCE:
- Sex Chromosomes
 - 23rd pair of chromosomes; Males = XY; Females = XX
- Sex-Linked Traits
 - traits associated with particular sexes
 - X-Linked Traits inherited on X chromosome from mother (ex: colorblindness, baldness, hemophilia)
- Linked Traits
 - genes are linked on chromosomes; genes on same chromosome are inherited together; ex: red hair and freckles
 - one trait controlled by many genes (ex: hair color, eye color, skin pigment)
- Multiple Alleles
 - presence of more than two alleles for a trait (ex: eye color)
- Polygenic Inheritance
 - one trait controlled by many genes (ex: hair color, skin color); genes may be on the same or different chromosomes
- Codominance
 - phenotype of a heterozygote is intermediate between the two homozygous parents; neither allele is dominant, but combine to display a new trait (ex: red flower + white flower = pink flower)
- Incomplete Dominance
 - phenotype of a heterozygote is intermediate between the two homozygous parents; neither allele is dominant, but combine to display a new trait (ex: red flower + white flower = pink flower)
- Dominance / Recessive ness
 - observed trait is controlled by a homoygous genotype
 - ex: dominance disease – Huntington’s, Cystic Fibrosis and Tay Sach’s

SOURCES OF VARIATION:
- Crossing Over
 - genes from one chromosome are exchanged with genes from another chromosome
 - occurs regularly during meiosis and leads to greater genetic variation
 - many different phenotypes are a result of the random assortment of genes that occurs during sexual reproduction
- Nondisjunction
 - during meiosis, homologous pairs of chromosomes don’t separate
 - results in half the sex cells having an extra chromosome and the other half having one less chromosome
 - if fertilization occurs with an abnormal sex cell, zygote formed will have either one extra (trisomy) or one less (monosomy) than the diploid number (ex: Down’s Syndrome caused by extra 21st chromosome)
- Genetic Variation
 - influenced by crossing over, mutations, genetic engineering, random assortment of genes, natural selection
 - genetic variation controlled by sexual reproduction (does not occur in asexual reproduction)
 - gene regulation vs. gene expression – the expression of genes is regulated by turning genes on / off or amount of action
 - environment can influence magnitude of gene expression (ex: improper nutrition can prevent proper bone growth)

MUTATIONS:
- change in genetic code
- passed from one cell to new cells
- transmitted to offspring if occurs in sex cells
- most have no effect
- Gene Mutation – change in a single gene
- Chromosome Mutation – change in many genes
- Can be spontaneous or caused by environmental mutagens (radiation, chemicals, etc.)
GENETIC ENGINEERING (GENOMICS):
- sometimes called biotechnology
- process of transferring a gene (DNA) from one organism to another
- Organisms with transferred gene now produce “recombined” genetic code (called “recombinant DNA”)
- Ex: insulin produced through bacteria
- Ex: oil-eating bacteria
- Has application in medicine, environment, industry, agriculture, selective breeding
- Human Genome Project
- DNA Fingerprinting

NATURAL SELECTION and THEORY OF EVOLUTION:
- proposed by Charles Darwin
- process by which organisms that are best suited to environment survive and pass genetic traits on to offspring
- has no effect on increased production of offspring, fossil formation, or changes in habitat
- adaptation – organisms with the most suited traits will survive
- evolution – change in a species over time (not a single individual, but the group)
- microevolution – evolution that occurs within the species level; results from genetic variation and natural selection within a population
 - antibiotic resistance
 - pesticide resistance
- macroevolution – evolution that occurs between different species; focuses on how groups of organisms change
 - convergent evolution – two species evolve similarly
 - divergent evolution – a group of species evolve differently
 - adaptive radiation – a group of species adapt separately to environments
 - speciation – formation of a new species
 - geographic isolation – physical barrier divides a population, results in individuals that cannot mate, leads to a new species
 - reproductive isolation – genetic mutation or behavioral change prevent mating

PUNNETT SQUARE:
- G G
- Y Y G
- Y Y G

EVIDENCE OF EVOLUTION:
- Fossils – may appear in rocks, ice, amber; when fossils are arranged in order of their age, the fossil record provides a series of changes that occurred over time; comparison of anatomical characteristics reveals shared ancestry
- DNA – when gene or protein sequences from organisms are arranged, species thought to be closely related based on fossil evidence are seen to be more similar than species thought to be distantly related
- Embryology – embryos of different vertebrates look alike in their early stages, giving the superficial appearance of a relationship

KARYOTYPE: to identify gender or chromosomal abnormalities

PEDIGREE:
- Key
- Male
- Female
- Affected individual
- Parents and one child
- Twins

ORIGINS OF LIFE:
- Biogenesis – idea that living organisms came only from other living organisms
- Spontaneous Generation – mistaken idea that life can arise from nonliving materials; sometimes called Abiogenesis
 - Francesco Redi performed controlled experiments that tested spontaneous generation of maggots from decaying meat – disproved idea.
 - Louis Pasteur performed controlled experiments that tested spontaneous generation of microorganisms in nutrient broth – disproved idea.
- Protocells – large, ordered structure, enclosed by a membrane, that carries out some life activities, such as growth and division; name given to first living cells, possibly photosynthetic prokaryotes; may have arisen through organic evolution; eukaryotes may have arisen through endosymbiosis (symbiotic relationship between prokaryotes)
Classification of Organisms according to Evolutionary Relationships, Historical Development and Changing Nature of Classification Systems, Eukaryotic vs. Prokaryotic Organisms, Eukaryotic Kingdoms, Dichotomous Keys

- Processes by which Organisms or Representative Groups accomplish Essential Life Functions
- Adaptations affecting Survival and Reproduction, Structural Adaptations in Plants and Animals, Disease-Causing Viruses and Microorganisms, Co-Evolution
- Interactive Role of Internal / External Factors in Health and Disease, Genetics, Immune Response, Nutrition, Parasites, Toxins
- Patterns of Animal Behavior as Adaptations to the Environment, Innate / Learned Behavior

CLASSIFICATION:
- process in understanding how organisms are related and how they are different
- taxonomy – branch of biology that studies grouping and naming of organisms
- history of classification systems
 - 4th Century B.C., Aristotle proposed two groups (plants and animals) and used common names for identification, based on “blood” and “bloodless”
 - early 1700s, Carolus Linnaeus developed a system based on physical characteristics
 - two kingdoms (plants and animals)
 - developed “genus” and “species”
 - designed system of naming called binomial nomenclature (“two names”) which gave each organism two names, a genus and a species, Genus always capitalized, both should be underlined or italicized
- Six kingdoms: Archaebacteria, Eubacteria, Protista, Fungi, Plantae, and Animalia
 - a dichotomous key is a tool used to identify organisms by using pairs of contrasting characteristics
 - basis of current classification: phylogeny, DNA / biochemical analysis, embryology, morphology, Phylogenetic trees

LEVELS OF CLASSIFICATION:
- Kingdom
- Phylum
- Class
- Order
- Family
- Genus
- Species

CLASSIFICATION OF HUMANS:
- Kingdom Animalia (multicellular organisms that eat food)
- Phylum Chordata (dorsal hollow nerve cord, notochord, pharyngeal slits)
- Class Mammalia (hair, mammary glands, endothermy, four-chambered heart)
- Order Primates (nails, clavicle, orbits encircled with bone, enlarged cerebrum, opposable digits)
- Family Homidae (bipedal – walk erect on two feet, advanced tool use)
- Genus Homo (“human” like)
- Species Homo sapiens

COMPARISON OF EUKARYOTE TO PROKARYOTE:
- Prokaryote – has nuclear material in the center of the cell, but is not enclosed by a nuclear membrane; no membrane bound organelles; examples: bacteria and blue-green algae
- Eukaryote – contain a clearly defined nucleus enclosed by a nuclear membrane and membrane bound organelles; examples: plants, animals, fungi, and protists

COMPARISON OF KINGDOM CHARACTERISTICS

<table>
<thead>
<tr>
<th>MONERA</th>
<th>PROTISTA</th>
<th>FUNGI</th>
<th>PLANTAE</th>
<th>ANIMALIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria</td>
<td>Protists</td>
<td>Eukaryote</td>
<td>Eukaryote</td>
<td>Eukaryote</td>
</tr>
<tr>
<td>Prokaryote</td>
<td>Eukaryote</td>
<td>Multicellular</td>
<td>Multicellular</td>
<td>Multicellular</td>
</tr>
<tr>
<td>Unicellular, colonial</td>
<td>Unicellular</td>
<td>Aerobic</td>
<td>Aerobic</td>
<td>Aerobic</td>
</tr>
<tr>
<td>Aerobic / anaerobic</td>
<td>Multicellular</td>
<td>Decomposer</td>
<td>Decomposer</td>
<td>Producer</td>
</tr>
<tr>
<td>Decomposer</td>
<td>Aerobic</td>
<td>Lack chlorophyll</td>
<td>Pathogenic</td>
<td>Photosynthesis</td>
</tr>
<tr>
<td>Heterotrophic</td>
<td>Pathogenic / parasitic</td>
<td>Saprophytic / parasitic</td>
<td>Vascular system, seeds</td>
<td>Cell wall (cellulose)</td>
</tr>
<tr>
<td>Photosynthetic (some)</td>
<td>Animal-like (protozoa)</td>
<td>Medicinal, food source</td>
<td>Vertebrates</td>
<td>Vascular system, seeds</td>
</tr>
<tr>
<td>Chemosynthetic (some)</td>
<td>Plant-like (algae)</td>
<td>Heterotrophic</td>
<td>Poisonous</td>
<td>Poissonous</td>
</tr>
<tr>
<td>Pathogenic</td>
<td>Medical, food source</td>
<td>Sexual / asexual</td>
<td>Alternation of generations</td>
<td>Alternation of generations</td>
</tr>
<tr>
<td>Medicinal</td>
<td>Mobile</td>
<td>Alternation of generations</td>
<td>Roots, stems, leaves</td>
<td>Ex: Homo sapiens</td>
</tr>
<tr>
<td>Classified by shape</td>
<td>Ex: amoeba</td>
<td>Often symbiotic with algae</td>
<td>Pollination(fertilization)</td>
<td></td>
</tr>
<tr>
<td>Binary fission</td>
<td></td>
<td>Ex: mushroom</td>
<td>Germination</td>
<td></td>
</tr>
<tr>
<td>Vaccines, antibiotics</td>
<td></td>
<td></td>
<td>Ex: oak</td>
<td></td>
</tr>
<tr>
<td>Ex: streptococcus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Current classification systems reveal six kingdoms, where Monerans are divided into Archaebacteria (ancient bacteria, anaerobic nature) and Eubacteria (true bacteria, aerobic nature).
Pollination

Adaptations

Leaves

Stems

Roots

Angiosperms

Gymnosperms

Two groups based on reproduction

Seed = embryo protected by a seed coat

Vascular, produce seeds

Seed-producing vascular plants

Alternation of Generations

Require water for reproduction

Clubs mosses, horsetails, ferns

Mature plant a small shrub — Southern live oak Quercus virginiana

Mature plant a large tree — Dwarf live oak Quercus minima

Leaf narrow, about 4-6 times as long as broad — Willow oak Quercus phellos

Leaf broad, about 2-3 times as long as broad — Shingle oak Quercus imbricaria

Lobes or teeth bristle-tipped: 6

Lobes or teeth rounded or blunt-pointed, no bristles: 7

Leaves mostly with 3 lobes — Black Jack oak Quercus marilandica

Leaves mostly with 7-9 lobes — Northern red oak Quercus rubra

Leaves with 5-9 deep lobes — White oak Quercus alba

Leaves with 21-27 shallow lobes — Swamp chestnut oak Quercus prinus

REPRESENTATIVE GROUPS AND ESSENTIAL LIFE FUNCTIONS

<table>
<thead>
<tr>
<th>Unicellular Prokaryotes</th>
<th>Amoebid Worms</th>
<th>Insects</th>
<th>Amphibians</th>
<th>Mammals</th>
<th>Nonvascular Plants</th>
<th>Angiosperms</th>
<th>Gymnosperms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport</td>
<td>Diffusion</td>
<td>Closed</td>
<td>Open</td>
<td>Closed</td>
<td>Closed</td>
<td>NO Xylem</td>
<td>Xylem and Phloem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Circulatory System</td>
<td>Circulatory System</td>
<td>Circulatory System</td>
<td>Circulatory System</td>
<td>NO Phloem</td>
<td>Absorption</td>
</tr>
<tr>
<td>Excretion</td>
<td>Pinocytosis</td>
<td>Coelom with Septa</td>
<td>Malpighian Tubes</td>
<td>Cloaca</td>
<td>Kidneys</td>
<td>Transpiration</td>
<td>Water and Sugars (Photosynthesis)</td>
</tr>
<tr>
<td>Phagocytosis</td>
<td>Diffusion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nitrogen</td>
</tr>
<tr>
<td>Respiration</td>
<td>Acrobric</td>
<td>Skin</td>
<td>Tracheal Tubes</td>
<td>Gills</td>
<td>Lungs</td>
<td>Cellular Respiration</td>
<td>Mitochondria</td>
</tr>
<tr>
<td>Mitochondria</td>
<td>Photosynthesis</td>
<td>Blood Vessels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Release Oxygen, Burn Glucose</td>
</tr>
<tr>
<td>Digestion</td>
<td>Flagella, Cilia</td>
<td>Nerve Cord</td>
<td>Brain, Ventral Nerve Cord</td>
<td>Ectotherms</td>
<td>Endotherms</td>
<td>NO Roots</td>
<td>NO Stems</td>
</tr>
<tr>
<td>or Pseudopodia</td>
<td>Exospore</td>
<td>Lateral Nerves</td>
<td>Brain</td>
<td>NO Stems</td>
<td>NO Leaves</td>
<td>Roots, Stems and Leaves</td>
<td></td>
</tr>
<tr>
<td>Filter Feeder(s)</td>
<td>Internal Digestion</td>
<td>Vascular System</td>
<td>Vascular System</td>
<td>Neocortex</td>
<td>Brain</td>
<td>NO Leaves</td>
<td>Members</td>
</tr>
<tr>
<td>Synthesis</td>
<td>Form Cysts</td>
<td>Regeneration</td>
<td>Honey, Wax</td>
<td>Glandular Secretions</td>
<td>Sweat</td>
<td>Glucose</td>
<td>Glucose</td>
</tr>
<tr>
<td>or Pinocytosis</td>
<td></td>
<td></td>
<td>Sil, Lecumber, etc.</td>
<td>(Poison)</td>
<td>Milk</td>
<td>Glucose Seeds</td>
<td>Flowers</td>
</tr>
<tr>
<td>Reproduction</td>
<td>Sexual</td>
<td>Asexual</td>
<td>Sexual (hermaphroditic)</td>
<td>Sexual</td>
<td>Sexual</td>
<td>Sexual</td>
<td>Seeds</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sexual</td>
<td>Direct</td>
<td>Sexual</td>
<td>Asexual</td>
<td>Alternation of Generations</td>
</tr>
<tr>
<td>Growth and Development</td>
<td>Spores (AoG)</td>
<td>True</td>
<td>Eggs</td>
<td>Eggs in Jelly</td>
<td>Placenta</td>
<td>Water Based Habitat</td>
<td>Land Based</td>
</tr>
<tr>
<td>Water Based Habitat</td>
<td></td>
<td>Segmentation</td>
<td>Metamorphosis</td>
<td>Tadpole Stage</td>
<td>Eggs (few)</td>
<td>Flowers</td>
<td>Cones</td>
</tr>
</tbody>
</table>

MAJOR SYSTEMS AND ORGANS

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>FUNCTION</th>
<th>BASIC ORGANS, AND STRUCTURAL PARTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circulatory</td>
<td>Transports nutrients, fluids, gases</td>
<td>Heart, veins, arteries</td>
</tr>
<tr>
<td>Digestive</td>
<td>Breaks down food into essential nutrients</td>
<td>Mouth, esophagus, stomach, intestines</td>
</tr>
<tr>
<td>Endocrine</td>
<td>Controls body functions through hormones</td>
<td>Glands which secrete hormones</td>
</tr>
<tr>
<td>Excretory</td>
<td>Removes cellular wastes from the blood</td>
<td>Bladder, kidneys, urethra</td>
</tr>
<tr>
<td>Immune</td>
<td>Protects the body against invading organisms</td>
<td>White blood cells</td>
</tr>
<tr>
<td>Integumentary</td>
<td>Protects the body by forming the body's outer layer</td>
<td>Skin, hair, nails</td>
</tr>
<tr>
<td>Muscular</td>
<td>Moves the body with the help of the skeletal system</td>
<td>Muscles</td>
</tr>
<tr>
<td>Skeletal</td>
<td>Supports the body internally</td>
<td>Bones, cartilage, ligaments, tendons</td>
</tr>
<tr>
<td>Nervous</td>
<td>Coordinates sensory input with motor output</td>
<td>Brain, spinal cord, sense organs</td>
</tr>
<tr>
<td>Reproductive</td>
<td>Provides a means of producing offspring</td>
<td>Testes (male), ovaries and uterus (female)</td>
</tr>
<tr>
<td>Respiratory</td>
<td>Controls the exchange of gases</td>
<td>Nose, pharynx, larynx, trachea, bronchi, lungs</td>
</tr>
</tbody>
</table>

REPRODUCTION, GROWTH, DEVELOPMENT:

Reproduction – production of offspring by an organism; a characteristic of all living things (can be sexual or asexual); exists for the continuation of the species, not the individual

Growth – increase in the amount of living material and formation of new structures in an organism; a characteristic of all living things; ex: getting bigger, growing muscle, longer bones, etc.

Development – all the changes that take place during the life of an organism; a characteristic of all living things; ex: infancy, youth, puberty, adulthood, death

DISEASE CAUSING MICROORGANISMS:

- **Microorganisms** are living organisms, usually unicellular bacteria, than can only be seen with a microscope.
- Benefits of microorganisms: help us to digest food, encourage normal development of the immune system, fight off bad organisms
- **Microbes** (or pathogens) include viruses, bacteria, fungi, and parasites, which cause disease when our immune system can’t fight them
- Microorganisms can be identified based on their size, shape, color, ability to form colonies, etc.
- Process of growing the organism is called a culture, and can be used to test sensitivity of organisms to various antibiotics which will help a doctor determine which drug to use in treating an infection.
- An infectious disease in humans occurs when balance is disturbed by: exposure to an organism, normal microorganisms in the body become pathogenic, or the human immune system does not act fast enough or strong enough.
- Most common areas on the body for microorganisms: skin, mouth, upper airway, intestine, genitals.
EXAMPLES OF INFECTIOUS ORGANISMS:
- **Bacteria** – microscopic, single-celled
 - *Streptococcus pyogenes* (strep throat)
 - *Escherichia coli* (urinary tract or intestinal infection)
- **Viruses** – cannot reproduce on its own (invades a host cell)
 - *Varicella zoster* (chickenpox)
 - *Rhinovirus* (common cold)
- **Fungi** – yeasts, molds, mushrooms
 - *Candida albicans* (yeast infection)
 - *Tinea pedis* (athlete’s foot)
- **Parasites** – organism such as a worm or single-celled animal (protozoan) that survive by living inside another organism (host)
 - *Enterobius vermicularis* (pinworm)
 - *Plasmodium falciparum* (malaria)

DEFENSES AGAINST INFECTION:

First Line of Immune Defense:
- **Physical Barriers** – skin, mucous membranes (linings of the mouth, nose, eyelids), airways, stomach acid, pancreatic enzymes, bile, intestinal secretions, urinary secretions

Second Line of Immune Defense:
- **Blood** – increasing the number of certain types of white blood cells that engulf and destroy invading microorganisms
- **Inflammation** – release or substances from damaged tissue isolates area to attack and kill invaders and dispose of dead and damaged tissue, and to begin repair; blood supply increases which brings more white blood cells to swollen area
- **Fever** – body temperature increases to enhance defense ability (controlled by hypothalamus in brain); causes shivers, chills, body aches; normal body temperature is 98.6°F, a fever is considered higher then 100°F

Third Line of Immune Defense:
- **Immune Response** – immune system responds by producing substances that attack invaders (ex: killer T cells, phagocytes) and the immune system produces antibodies that attach to and immobilize the invader to kill it; antibodies will “remember” the infectious organism so it will kill it upon next exposure; immune system is present all over the body and tightly bound to blood and lymph systems; tissues and cells that provide antibodies include red bone marrow, thymus, spleen, circulating lymphatic system, and white blood cells.
- There are two types of immunity:
 - **Natural Immunity** – created by body’s natural physical barriers or in the form of antibodies passed from mother to child
 - **Acquired Immunity** – created by exposure to a specific microorganism, which is “remembered” by the body’s immune system
 - **Immunization** – body’s ability to fight off certain organisms is stimulated or enhanced
 1. Active Immunization – contain either noninfectious fragments or whole pieces of bacteria or viruses that have been weakened so they will not cause infection but will instead cause the production of antibodies (vaccination)
 2. Passive Immunization – antibodies against a specific infectious organism are given directly to the person (vaccine may not be available)

External Defenses:
- **Antibiotics** – organic substances synthesized by microorganisms or at a lab used to treat infectious diseases or to prevent them; each antibiotic is specific to a certain bacteria; can be administered by mouth, vein, or muscle
- **Hygiene** – keeping a clean environment that limits exposure to infected bodily fluids, decomposing material, or infected people will prevent the spread of infection

ANTIBIOTIC RESISTANCE:
- Some bacteria are resistant to antibiotics because they have enzymes that can destroy the antibiotics or because of genetic mutation that allow them to grow despite the antibiotics
- Increasing numbers of microorganisms have become resistant to antibiotics are violent and untreatable, now called “superbugs”
- Overuse of antibiotics has led to the development of resistant bacteria

How can you prevent the spread of antibiotic resistance?
- Avoid antibiotics unless they are clearly needed
- Do not take antibiotics without the advice of a doctor
- Take the full course of prescription
- Do not save antibiotics for later
- Do not demand antibiotics from the doctor

ANIMAL BEHAVIORAL ADAPTATIONS:
- **Behavior** – animal’s response to a stimulus
- **Innate behavior** – instinct; influenced by genes
 - Ex: bird defending its nest
- **Learned behavior** – changed by experience
 - Ex: training a pet to respond to a specific name
- **Social behavior** – interactions between members of the same species
 - Ex: mating and caring for offspring
- **Territorial behavior** – organisms defend an area to keep out other organisms (ex: animal marking trees)
- **Reflex** – automatic, neuromuscular action (ex: knee jerk)
- **Taxis** – response to a directional stimulus; organism is motile

CIRCADIAN RHYTHMS AND RHYTHMIC BEHAVIOR:
- 24 hour cycle in plants, animals, fungi, and bacteria
- Biological rhythms can be daily, weekly, seasonal, annual
- Can be influenced by external factors such as sunlight and temperature
- Rhythmic behavior can be passed through genes to offspring
- Include behaviors such as sleeping, eating, brainwave activity, hormone production, cell regeneration, mating and sexual reproduction, hibernation, estivation, etc.
ADAPTIVE RESPONSES:
- **Mimicry** – structural adaptation that allows one species to resemble another species; may provide protection from predators
- **Camouflage** – structural adaptation that enables species to blend with their surroundings; allows a species to avoid detection
- **Migration** – instinctive seasonal movements of animals from place to place
 - **Emigration** – movement of individuals from a population; leaving the population
 - **Immigration** – movement of individuals into a population
- **Hibernation** – state of reduced metabolism occurring in animals that sleep during parts of cold winter months; an animal’s temperature drops, oxygen consumption decreases, and breathing rate declines
- **Estivation** – state of reduced metabolism that occurs in animals living in conditions of intense heat
- **Mating / Reproduction** – production of offspring for the survival of the species; can be seasonally scheduled

PLANT TROPISM:
- **Geotropism** – response to gravity; roots have positive geotropism; stems have negative geotropism
- **Phototropism** – response to light (leaves)
- **Hydrotropism** – response to water (roots)
- **Thigmotropism** – response to touch (venus flytrap)
- **Chemotropism** – response to chemicals

- **Interrelationships among Organisms / Populations / Communities / Ecosystems, Techniques of Field Ecology, Abiotic / Biotic Factors, Carrying Capacity**
- **Flow of Energy and Cycling of Matter in the Ecosystem, Relationship of Carbon Cycle to Photosynthesis and Respiration, Trophic Levels, Direction and Efficiency of Energy Transfer**

ENERGY FLOW IN AN ECOSYSTEM

SUN >>>>> **GRASS** >>>>> **MICE** >>>>> **HAWK**

Sunlight is the main energy source for living things. Energy flows through an ecosystem from the sun to organisms within the ecosystem in one direction. Two main groups of organisms in the ecosystem are the producers and consumers.

- **Producers** – autotrophs, use sun’s energy to make their own food, plants (grass)
- **Consumers** – heterotrophs, cannot make their own food, eat other living things to get their energy (mice- primary consumers; and hawk- secondary consumer)

STRUCTURE OF AN ECOSYSTEM

<table>
<thead>
<tr>
<th>Organism</th>
<th>Species</th>
<th>Population</th>
<th>Community</th>
<th>Ecosystem</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deer</td>
<td>Species</td>
<td>Population</td>
<td>Community</td>
<td>Ecosystem</td>
<td>Environment</td>
</tr>
</tbody>
</table>

SYMBIOTIC RELATIONSHIPS:
- **Symbiosis** – permanent, close association between one or more organisms of different species
- **Mutualism** – a symbiotic relationship in which both species benefit (ex: in subtropical regions, ants protect acacia trees by fighting invaders, acacia tree provides nectar to ants)
- **Commensalism** – symbiotic relationship in which one species benefits and the other species is neither harmed nor benefited (ex: Spanish moss grows on and hangs from limbs of trees, but does not obtain any nutrients from tree, nor harm the tree)
- **Parasitism** – symbiotic relationship in which one organism benefits at the expense of another, usually another species (ex: parasites such as bacteria, roundworms, tapeworms live in the intestines of organisms to obtain nutrients and reproduce, but cause disease in the organisms)

GROUPS OF ORGANISMS

<table>
<thead>
<tr>
<th>Consumer</th>
<th>Energy Source</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herbivore</td>
<td>Eat plants</td>
<td>Deer</td>
</tr>
<tr>
<td>Carnivore</td>
<td>Eat other animals</td>
<td>Lion</td>
</tr>
<tr>
<td>Omnivore</td>
<td>Eat plants and animals</td>
<td>Human</td>
</tr>
<tr>
<td>Decomposer</td>
<td>Break down dead organisms</td>
<td>Bacteria & Fungi</td>
</tr>
</tbody>
</table>
FOOD CHAIN:
- Path of energy from producer to consumer
- Each level is called a trophic level (trophic = energy)
- Approximately 10% energy is transferred to next level
- 90% used for personal metabolism and development

FOOD WEB:
- Interconnected food chains
- Shows all possible feeding relationships at each trophic level in a community

ECOLOGICAL PYRAMID:
- Representation of energy transfer
- Pyramid of Energy – each level represents energy available at that level, 90% decline
- Pyramid of Biomass – each level represents amount level above needs to consume
- Pyramid of Numbers – each level represents number of organisms consumed by level above it

SOME EXAMPLES OF ENVIRONMENTAL LIMITING FACTORS
<table>
<thead>
<tr>
<th>Biotic (living)</th>
<th>Abiotic (nonliving)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plants</td>
<td>Climate</td>
</tr>
<tr>
<td>Animals</td>
<td>Light</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Soil</td>
</tr>
<tr>
<td>Prey</td>
<td>Water</td>
</tr>
<tr>
<td>Food Sources</td>
<td>Shelter</td>
</tr>
<tr>
<td>(Nutrients)</td>
<td>Pollution</td>
</tr>
</tbody>
</table>

SPECIES / POPULATION SURVIVAL:
- Natural Selection – mechanism for change in populations; occurs when organisms with favorable variations survive, reproduce, and pass their variations to the next generation; “survival of the fittest”
- Adaptation (Behavioral or Physiological) – evolution of a structure, behavior, or internal process that enables an organism to respond to environmental factors and live to produce offspring
- Limiting Factors (Environmental) – any biotic or abiotic factor that restricts the existence, numbers, reproduction, or distribution of organisms
- Genetic Mutations – any change or random error in a DNA sequence (one gene or many; somatic cells or gametes)
- Biodiversity – variety of life in an area; usually measured as the number of species that live in an area
- Evolution (Macroevolution vs. Microevolution) – gradual change in a species through adaptations over time
- Endangered Species – number of individuals in the species falls so low that extinction is possible
- Extinction – disappearance of a species when the last of its members die

CHARACTERISTICS OF LIVING THINGS:
- require food for energy to carry out life processes
- use energy to maintain homeostasis
- respond to stimuli in the environment
- grow and develop
- reproduce similar offspring
- pass genetic information to their offspring
- composed of cells
- composed of organic based compounds

ALTERNATION OF GENERATIONS:
- type of life cycle found in some algae, fungi, and all plants
- where an organism alternates between a haploid (n) gametophyte generation and a diploid (2n) sporophyte generation

CYCLES:
(Matter cannot be created nor destroyed, but can be converted/recycled to other forms)
- Water Cycle – water is recycled through evaporation, condensation, precipitation, runoff, groundwater, aquifers, respiration, transpiration, excretion, decomposition
- Nitrogen Cycle – producers take in nitrogen compounds in soil and pass to consumers that consume the producers; decomposers (bacteria) break down nitrogen compounds and release nitrogen gas to air or usable nitrogen so the soil
- Carbon Cycle – carbon is recycled through respiration, photosynthesis, fuel combustion, decomposition; carbon can be atmospheric or dissolved, or can be found in organic compounds within the body

ECOLOGY FIELD STUDY:
- using specific methods and procedures to study plants and animals in their natural setting, and to observe interrelationships of living and non-living factors in a specific habitat
- observations might include: temperature recordings, location, soil description, number and kinds of plants and animals, food source(s), rainfall amount, change in growth, interactions between organisms, identification of organisms into genus and species, temperature variations from morning to afternoon to night, light levels (at different times of day), sound levels (at different times of day), photographs, diagrams of levels (ground level, canopy level, etc.) and the animals and plants at each level, water sampling, quadrant studies, graphs of growth
- field study requires the collection of data and the analysis of data through graphs, charts, diagrams, etc.
- field study also requires the recording of all observations, data, etc. into a legitimate field notebook that would include personal interpretations, photographs, newspaper clippings, etc.
TYPES OF ECOSYSTEMS (BIOMES):

AQUATIC: based on flow, depth, temperature, chemistry

TERRESTRIAL: based on geography, rainfall, temperature

Tropical Rain Forest – significant diversity, warm, moist

Savanna – grassland with isolated trees, warm year-round, consistent rainfall, borders deserts

Desert – hot, dry, minimal rainfall, middle latitudes

Temperate Grassland – variety of grasses, cold winters, warm summers, seasonal rainfall, borders savannas

Temperate Forest – deciduous, seasonal growth and weather patterns

Taiga – coniferous, borders tundra

Tundra – cold, frozen

Marine – oceans, saltwater, large diversity

Freshwater – lakes, streams, lower diversity

IMPACT OF HUMANS ON THE ENVIRONMENT:
- caused extinction of species through hunting, fishing, agriculture, industry, urban development
- growing population = greater demands on environment
- affected quality and quantity of land, air, water resources
- Pollution = pollutants
 - Air Pollution = smog, acid rain, dust, smoke, gases, fog, carbon dioxide
 - Water Pollution = sewers, industry, farms, homes, chemical waste, fertilizer, dirty dish water
 - Land Pollution = landfills, dumpsites, runoff, negligence, urban wastes

CONSERVATION EFFORTS:
- conserve energy resources
- protect and conserve material resources
- control pollution (recapture wastes, carpooling, solid waste neutralization)
- wildlife conservation protect animals from habitat loss, over-hunting, pollution
- reduce, reuse, recycle programs
- sanitation and waste disposal programs

CRITICAL ISSUES:
- Global Warming, Pesticides, Population Growth

FACTORS THAT AFFECT POPULATION CHANGE:
- natural increase of a population depends on the number of births and deaths
- if births outnumber deaths, there will be an increase in population
- growth rate of a population measured in terms of birth rate (number of births per 1000 people per year) and death rate (number of deaths per 1000 people per year)
- fertility rates (number of babies), life expectancy, migration / immigration also contribute to population change
- study of population is called demography; a census is a measure of the population at a particular time
FACTORS THAT AFFECT CLIMATE CHANGE:
- distance from the sea
- ocean currents
- Direction of prevailing winds
- relief (altitude / mountains)
- proximity to the equator
- El Nino phenomenon
- human population growth
- pollution
- industry

FACTORS THAT AFFECT RESOURCE USE AND SUSTAINABILITY:
- population count
- number of producers and consumers
- per capita consumption
- rate of industrial, urban, and infrastructure development
- wealth of country / municipality
- amount of precipitation
- renewable or nonrenewable status
- pollution / degradation of land
- industry, manufacturing, commercialism
- recycling programs
- conservation programs
- substitution programs

Good Luck and Good Testing! 😊

Additional Resources used to develop this study guide (other than those already listed or the textbook):
1. www.dictionary.com
2. www.wikipedia.org
5. www.reference.com